Aneuploidy Causes Non-genetic Individuality

نویسندگان

  • Rebecca R. Beach
  • Chiara Ricci-Tam
  • Christopher M. Brennan
  • Christine A. Moomau
  • Pei-hsin Hsu
  • Bo Hua
  • Rebecca E. Silberman
  • Michael Springer
  • Angelika Amon
چکیده

Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-35: Genetic Aberrations in Early Development:The Origins and The Fates

Genetic aberrations are commonly seen in human preimplantation embryos. Non-disjunction and premature division of a chromosome are common in both meiosis and mitosis divisions. The expected result for meiotic aneuploidies is full aneuploidy in the later stages whereas mosaicism is the most frequent event in the cleavage and blastocyst stages. The main causes for mosaicism are post-zygotic event...

متن کامل

The origin of human aneuploidy: where we have been, where we are going.

Aneuploidy is the most common chromosome abnormality in humans, and is the leading genetic cause of miscarriage and congenital birth defects. Since the identification of the first human aneuploid conditions nearly a half-century ago, a great deal of information has accrued on its origin and etiology. We know that most aneuploidy derives from errors in maternal meiosis I, that maternal age is a ...

متن کامل

The Causes and Consequences of Aneuploidy in Eukaryotic Cells

Correct transfer of genetic information to daughter cells is essential for successful propagation of any organism. Three processes are involved in maintenance and propagation of genetic information: DNA replication, DNA damage repair and chromosome segregation. Error in any of these processes might result in cell death, or, in another scenario, in survival of cells with altered genetic informat...

متن کامل

O-45: Quantification of Cell-Free-Fetal-DNAfrom Maternal Plasma for the First Time in Pakistan:Implications for Non-Invasive PrenatalDiagnosis of Genetic Disorders

Background: Current prenatal diagnosis requires invasive testing which carries a 1-4% procedure-related-risk of miscarriage; hence, non-invasive techniques are desired. The recent demonstration of cell-free-fetal-DNA enriched from maternal plasma has opened new possibilities for non-invasive-prenatal-diagnosis of not only genetic-disorders such as β-thalassaemia and haemophilia but also chromos...

متن کامل

How aneuploidy affects metabolic control and causes cancer.

The complexity and diversity of cancer-specific phenotypes, including de-differentiation, invasiveness, metastasis, abnormal morphology and metabolism, genetic instability and progression to malignancy, have so far eluded explanation by a simple, coherent hypothesis. However, an adaptation of Metabolic Control Analysis supports the 100-year-old hypothesis that aneuploidy, an abnormal number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2017